1·The existence and uniqueness of limit cycles of a biochemical system is proved.
本文研究一类生化系统的极限环的存在性与唯一性;
2·In chapter 2, center condition and bifurcation of limit cycles of quasi cubic system are I.
第二章研究了一类拟三次系统的中心条件与极限环分支问题。
3·Aim To discusses the existence and uniqueness of limit cycles for a class of quadratic system.
目的研究一类二次微分系统的极限环存在性及唯一性。
4·The global stability problem of limit cycles for decentralized relay feedback systems is studied.
研究了分散继电反馈系统极限环的全局稳定性问题。
5·Conclusion The existence, unique-ness and stability on limit cycles for this system are obtained.
结果得到了此类系统极限环存在且唯一的充分条件。
6·Then by using Poincare-Bendixson theorem sufficient conditions for the existence of limit cycles are obtained.
在此基础上,利用微分方程的环域定理获得了所述系统存在极限环的条件。
7·It is the first time that 7 limit cycles can bifurcated from the infinity for a class of quasi quintic system.
首次证明了拟五次多项式系统在无穷远点能分支出7个极限环。
8·The existence and uniqueness of limit cycles are discussed, and the equation of bifurcation surfaces is obtained.
对一个自催化反应振动模型作了全局分析,讨论了其极限环的存在与唯一性,给出了其分枝曲面方。
9·The maximum length of limit cycles for fuzzy bidirectional associative memories ( FBAM ) is studied in this paper.
本文主要研究了模糊双向联想记忆网络的最大极限环长度。
10·The stabilities of the equilibrium points and limit cycles in different regions of two parameter plane are studied.
在两个参数平面上研究了系统在余维二分叉点附近的不同区域内平衡点和极限环的稳定性及其个数。